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ABSTRACT 

1 ^ 

A method Is presented for unifying the analysis of various wave 

properties of a plasma In a magnetic field. An expression Is derived 

for any microscopic perturbation quantity as an Integral of an expecta- 

tion value with respect to the equilibrium distribution. This yields 

permittivity and conductivity tensors, and hence the dispersion relation, 

or spatial and temporal decay or growth rates, for any specified velocity 

distribution.  In the plane wave case, the averaging is eliminated and 

the calculation significantly simplified by transformation to "inverse 

velocity space," so that singular integrals do not appear and phenomena 

such as Landau damping become evident.  Quasistatic and exact dispersion 

relations are derived for cold, Maxwelllan, resonance, and drifting 

distributions. Collisions are accounted for as a viscous drag force 

along the orbits. Generalizations to other external force fields are 

discussed. 

- 1 - 



TABU OF COmiNTS 

1. INTRODUCTION  l 

2. SOLUTION OF BOLTZMANN EQUATION  S 

3. PERTURBATION QUANTITIES  * 

4. UNPERTURBED ORBIT  * 

5. MACROSCOPIC OBSERVABLES  15 

6. INVERSE VELOCITY SPACE     *> 

7. QUASISTATIC DISPERSION - B • 0  34 

8. QUASISTATIC DISPERSION -  B ^   0  '" 

9. EXACT DISPERSION -B-0  ,J 

10. EXACT DISPERSION -BffO  40 

11. TEMPORAL DECAY RATES  4J 

12. SPATIAL DECAY RATES • ** 

13. OTHER EXTERNAL fORCXH  M 

14. CONCLUSIONS  JJ 

15. REFERENCES  M 

Tabla I:    Dlatrlbutioes  in  lnv«r*« \ tloclty Mpmem      •• 

Figure 1 - Daapcd hvlleal traj«ctorr of    •».}•«• partioU" 

in ugMtop: ^»« •••••••• M 

Figu.o 3 - Th* oblivioa f% •.-.r du« to eolltaioM  M 

- U - 

i 



rgr, 4, i) 

4 

i 

i 
4 

I 

It.i 

Oiatribwiloi« fuMUM i« ««tociiy 

O.tirikMiiM NMIIM I» im*PM «•tMltf 

^MIIIM  «««lor   I«   MH*rM  «»iMMf »PM*. 

»•••i  i   •!!% ««u«iif   t   •• urn   I   , 

Alt «MIM fttaag «MltM» Ml.f««!  ««i.lU   fMM ^ 

•a« «UM. 

Jl    ,  »9«|Mfi«« MUM«   «I«*«  M^wti«   f|«M 

J  'A    •  P^JMIM« MirM,  9M| 
fMM 

i «    . Ml««* ntlM f   .♦»•^  »»^«.H.'  •»•* 

j  i^-   «|l     .   ••ft  MfMlM  0M«#l**«««» 

•I ■ «Jl   , mmfn 
MM IN» «•»«»iff «I 

|I . .^^»^  ,„,••« UM. 



■tol 

!»•»< M 

.•♦ 

I 

I 



I. 

«pllf»««!»«».   ««I  l*l«f««ll«» •• • «•Mlliai »taM»  I«   !• *•   I«MMM 

M • MU««MM»!•«••«   »M«<ttf«*ll«l ^t««!«!!«* •!   Ift»   I»»I4»   ftM«rl*l*« 

•«• • #«•• •«•lllfeH«» «•fcwllf <MirMwlf» ••  tt» #UMt «MAIM»' 

•*••     ft» «MMtti^ »UM n» i M i« «**< %m ■«■*« nsimiti «utar« 

twwM «*Mi «• ffMf «tall PN««»»■"'■ ••** •• •*• •»**•*     »^ *•# I» 

•«•« MIM» «MW •* vtm tlwm*   lagp■■■ $ «IM ■• IfeN« f*»M» «f»* 

•••*  •   |««M#««N«   UK IM «I   «I» **•«• 

-..   «•»• 

« 
m** ■ m-» 

'♦ 

.. 

►•« «ft 

- .* 

I« 



i 
■tmlr-iilM i-    _—- 

•ad spatial daoay or growth rates «re obtainable directly.    The quasi- 

• tatle approxlMtion,  although often convenient,  1* not necessary to 

UM aaalysls aad both qua«istatic and exact results are presented. 

•Ugvlar tatafrala,   requiring careful specification uf the inte- 

^aum «MiJitrs la «he coaple« plan«,  are avoided,   leaving strsight- 

for»arrt qvadralvf«« Uai are altter standard Integrala or types readily 

a—dirt tf t*mm\mr9.    Laadau Md cyclotron dating effects appear lu 

a aaivrat. wajarwd sssur.  eiUoat eoaples contour integrstlon or 

••i#«taiMa of rMi««M ai aia^laritia«. 

p%am —m m »wrtM MftlftM 'a partonisd la a particularly 

• ««tM SMS»« ty ifMalarwtl— •» «•• «dlMlty dlatributioa to "lavarM 

.'  ia •**•* ai#uri««ai atgaferai« siaplificatioa »• 

1Ü «ffW«« * «nf« M tMM >■■■■ PMilly datar^iaable. 

.. e«»«tf ^«v«al*«Ml *• «f««««» »•«•f«altf fere*« otaer- 

paraaain« effaaU. 



2.  SOLUTION OF BOLTZMANN EQUATION 

The Boltzmann equation governing the velocity distribution f of 

a constituent of the plasma may be expressed *s 

(2.1) 

Although it Is standard6 to separate the collisional rate of change as 

a forcing term, the effect of collisions will here be incorporated in 

the acceleration,  a . experienced by the plasma constituent, as 

detailed in Section 4. 

The nonlinear equation will be simplified at the outset by linear- 

izing about an equilibrium distribution yv)  . Thus, the distribution 

function will be 

f = W + fi<£. v, t) , (2#2) 

where    f0    conforms to the externally Imposed force field producing the 

acceleration   ^    in the constituent particles,   and the perturbation 

fj    is as^ciated with the internally induced fields producing particle 

acceleration   ^    .    With some additional effort,   the more general case 

of a spatially varying equilibrium distribution    f0(r,   v)    could be 

treated as well. 

Linearization prescribes 

afo 
■So  '    "~"    =    0 (2-3) 

- 3 - 



i 
as a precondition for equilibrium,  and 

afl - afl »*, + v - V*, + a.n . 0 
%f 1 ■," A)  '    7~    =    ^1   '      (2.4) 

as the equation governing the perturbation of the distribution. How the 

collision term is to enter these two equations is discussed in Section 

4. 

In these equations, a^r, v, t) is a prescribed external excita- 

tion and the equilibrium distribution f0(v) is presumed known. The 

first-order acceleration a^r, v, t) is specified in terms of the 

r.f. fields in the plasma, which in turn depend on the unknown perturba- 

tion f1 . A self-consistent solution of this equation is required in 

order to determine the wave properties of the medium. 

The solution to the linearized Boltzmann equation is obtained by 

integrating along the unperturbed trajectory of a constituent particle 

experiencing the acceleration art . Provided that 

d£ dv 

dt   ~       dt 
*   Z      •    "" = *o » (2.5) 

the equation states that 

— = - a • — 
dt     ~1   av 

0 
=    m h           • (2.6) 

- 4 - 



or simply the total time derivative along the trajectory specified by 

(2.5). The solution which vanishes at t = - oo , before the perturba- 

tion sets in, is 

t af_        ,        . 
fl(£' I» t) M " f      ' *it(T)' Z<T)' T) dT •       <2«7> 

-oo ^v  "" 

The integrand is evaluated along the orbit given by (2.5). As this 

orbit is to pass through r with velocity v at the time t , the 

Integral depends on r and v as well as t . It is implicit in 

(2.7) that the perturbation has a starting time. A steady-state analysis 

7 
can be reconciled with this by tacitly including a small loss component, 

a 
or an adiabatic switching factor, to guarantee convergence of the 

Improper integral. 

- 5 - 



3.  PERTURBATION QUAMTITIBS 

The various quantities of physical interest associated with the 

plasma are expressible as expectation values of certain functions of 

velocity. Quantities that vanish at equilibrium are obtainable by 

averaging with Just the perturbation f.(r, v,  t) , typically yielding 

the perturbation quantity S-iCr» t) as the average of a function 0(v) 

Vi' t) = J fl(£' Z» t) ^I* d~ • <3-1) 

The excess charge p(r, t) Is obtainable in this way with 0(v) ■ q 

and the r.f. current density J(r, t) with 0(v) = qv . More generally, 

0(v) may represent a velocity-dependent operator acting on the coordin- 

ates. 

In view of (2.7), any such quantity may be calculated as 

t öfn 
»!<£!*) = -JJ  —^ ' »i *<v) dT dv . (3.2) 

-op 3v   *" 

This expression may be simplified by invoking the divergence theorem in 

velocity space, along with the condition that fn -* 0 , strongly, as 

jvj -. oo , leaving 

- 6 - 
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r««p«ot to tlM variabU    v • »(i)    , 

u«p«rturbid dUtrlbUlloa   fuocilo«.   M 

/ £ot> t   •   %,   . VK»))   -  J f^l f(t) ij   ,       (,.4) 

th« final r««uit  i. «sprvMibto •« 

•i* ^■ ■» (I<| [«jm • ^CTI•<I,K.. (a.t) 

Tbl. ^,,.,100 i. tb« bMl. for tb. eoleoHioo of .n prturboiio. 

qu^tlti^ of lou«.,.    Tb. furtbor miop—t af «bu ten«.!, ^u.^. 

tbo introductloo of tb« uaptrtorbod ti^ctory   r(T)    ,  »<,,   „ , 

function of   r   t  v    ,   t 
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4.  UNPERTURBED OHBIT 

Th» general result may now be specialized to the case of a constant, 

uniform magnetic field ^ as the external force field.  This introduces 

s preferred direction in space, that of ^ , to be specified by the 

unit vector b .  It is then convenient to define a trio of matrices 

•■•ocisted with fc , as follows. 

Here, ^1 is the unit matrix; || and J_ are seen to be projection 

operators and X performs the cross product operation. A mutually 

orthogonal, idempotent set of matrices is formed by R , L , 11 

where 

1 - j (1- IX)  ,  L = 5 (1+ iX)  . (4.2) 

These represent right- and left-handed circular polarization operators, 

respective!/. The spectral expansion of the operator X shows that 

any matrix function of X reduces to 

f(X) . f(i) R + f(-i) L + f(0) ||  . (4.3) 

The utility of these definitions arises from the fact that in the 

external magnetic field BQ , the constituent particle acceleration 

- 8 - 



a  produced is 

^ = (q/») v x K0 = - ^c X v | (44) 

where (ü = qB^m is the signed cyclotron frequency. With 

a = dv/dt  , this equation describes the precession of the velocity 

vector about the magnetic field. 

One consequence of the form of the acceleration imposed by the 

external magnetic field is that the condition (2.3) on the unperturbed 

velocity distribution becomes 

—2.X.v = b.vx — = —^ = 0,        (4.5) 

av     ""    "     *'   *""     gv      Scp 

which precludes any velocity-space azimuthal (cp) dependence of the 

equilibrium distribution. 

Although the Introduction of the orbit into (3.5) is now straight- 

forward for the collisionless case, it is desirable at this point to 

incorporate the effects of collisions, in some manner. This would at 

least serve to resolve ambiguities associated with singularities appear- 

ing in the absence of collisions. Some of these arise from the fact 

that the matrix X is singular.  To maintain tractability, collisions 

are here to be included in the simplest fashion, in terms of an equiva- 

lent "collision frequency" or inverse relaxation time, v  . This is 

commonly introduced in any of various convenient or reasonable approxi- 

ö-ll 
matlons    to the collislonal term in (2.1).  It should be noted that 
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i 
• simple relaxation tarn In tba Boltuann aquation la inadäquatJ «ban 

the quaalatatlc approxlaatlon la to be ueed ab Inltlo, duo to Ita 

failure to conserve particles locally. 

The artifice to be employi'1 here to repreaent oolllaional effecta 

la to ascribe them to merely a modification of the unperturbed orbit. 

The typical particle la considered to be aubject to • vljcoua drag 

force, In addition to the magnetic one, to the extent that Ita velocity 

dlffera from tlM mean flow velocity at equilibrium. Besides the reaul- 

tant tractabillty, this method has the virtues of yielding results 

consistent with the limiting caae of cold plasma hydrodynamlc theory, 

as well as consistency between quaalatatlc and exact theory. Although 

this approach neglects diffusion in velocity space, the proposed change 

in the unperturbed orbit appears also as an essential modification of 

the collisionless case when more careful account is taken of collisions 

via a Fokker-Planck model. 

Accordingly, the acceleration in (4.4), which prescribes the orbit, 

is modified to 

to = -^cii -v ^ --V  • (4-6) 

where v is the effective collision frequency, assumed constant, and 

v^ = (^v) is the mean, d.c. drift velocity of the equilibrium distribu- 

tion. The acceleration is still linear in the velocity in this model 

and the orbit is readily expressed, from (2.5), by 

dr/dT w V(T) ,  dv/dT ■ - C^X + v) v + vjj^ ,     (4.7) 

- 10 - 
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tie f»«ld,  ih« ortit *iu*tiod «cttMlly »l^llftM t« 

|-   (*   -   »^   ■   -lUBjl   ♦   V)(V   -  ^,1       . <*.•> 

ill t«rM of th. |»«cull«r, or r^odoc.  velocity   v > ^    «öd th. noMinfUlar 

matrix    OJ X + v    ■    Y    . 

The solution for the trajectory 1» 

vfT)-^ - e-^^Cv-V ; <4^ 

r(T) » r + v^r-t) ♦ [1 - .-I^-^] fV - V  .       (4.10) 

Equation (4.9) expreeee» the damped precession of the peculiar velocity 

vector about b , until it attain« v - ^ at time t ; eq. (4.10) 

describes the constricted helical path taken by the particle which 

ai.ives at r with velocity v at time t , as indicated in Fig. 1. 

By use of (4.3), these expressions may be rendered more explicit, 

for reference purposes. Let T = t + u , r(T) = £ + £ s V(T) ■ w . 

Then 

w = vrt + U(u) • (v - v^) , t4-11) 

s m    vnu + S(u) . (V - V ) (4.12) 

- 11 - 
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**mtm 

• •^, («Mte •) 1 - «IM» «H • 11 14.19) 

• Bd 

• <•) - (I - •"£') T"1 

•(v-to )u 
c 

v ♦ ÜÜ 
L . 1 - • 

V - A-, 
. (4.14) 

Mote that, sine« vÄ - II v ^0 - II io 

«(Y)^ = gcv)^ 
(4.15) 

for any matrix function. Also, the result S(u)eIU = .s(-u) will 

useful later. 
be 

It may be noted that, by virtue of the time-inviriance of the 

system, the particle dynamics are entirely expressible in terms of the 

elapsed time u = T - t . Finally, for use in (3.5). note that 

av/&v(T) = Ju  . 

Substitution of these results in (3.5) makes it applicable to the 

magnetized plasma: 

- 13 - 
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»«•!•••*«   I*   It   It.UI        f%M  •*»#«««*«»  #|«««   «•»   f|*M  •«•«»• 

• IM •#  U» M»f«M«#M   «««illlf  IMMilplMlto   ••     f «2*     ••»   «• 

i«w«« «t mtfm  n  mi warn • •# u» mtßm%%m4 »;•-•• 

r» •*«•»•»•«i«-   ^Ir. t,  i|    i« ito iMwwf »•♦«• ri*M»      Ito UiMr 

«i« Ite •!—iw—nu fuMi «Mil«« i« i*» plmm, — UMI 

.h»  «ourcvB Of    Ij     .   Bl     ant  ito  ctarg«  Md eurmt d«MltlM,   obtain- 

•bl« ID turn fi-o« (4.16). 
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5.  MACROSCOPIC OB8ERVABI£S 

baale phyaloal quantities of interest are the exces« charge 

•Ad current den»ltie» In the plasma. These may be calculated by taking 

j( ) - q snd <^v . respectively, in (4.16): 

»i*.  *> V J0 <^ • [• 
(a) X+V)u 

c*- a. (rfs^,  w,   t+u) i du (5.1) 

0& t) - v £ NE * I:       " 'l("• '•t+u) -J/du ' (5'a) 

It aay be noted at this point that the general result of eq.   (4.16) 

reduce» to the following expressions in the cases of harmonic time 
. lüit -i 

variation and of plane waves.    With    a^r,  v,   t) = Re  [a^r.v)«      J    or 

• (r,   v,  t) - Re  [a (v)ei<a)t'-,i) ]    ,  and corresponding expressions for 

the macroscopic quantities of interest, 

•i<I> - no  J it (0)  X+V+lü3)U 

' *i*£*■£• 2) Q^Vl/ du 

*1 = no   / 

/       r (u) X+v+iu3)u    -ik-s TV 
du 

(5.3) 

(5.4) 

Wave properties of the medium are most readily obtained from 

quantities derived from the charge and current,  rather than from the 

sources themselves.    Dispersion relations are expressible in terms of 

susceptibilities and spatial and temporal decay rates in terms of the 

- 15 - 



power balance. To obtain this, Maxwell's equations, or their equivalent, 

must be combined with the above expressions. 

The medium may be considered as either dielectric or conducting, 

as convenient. The dielectric susceptibility K(k,ay) is so defined 

for plane waves that 

p - -ie^ • K(kfCD) . ^ (5.5) 

and the normalized conductivity C(k,u>) is defined by 

J = -i«0<u C(k,(ü) . Bj  . (5.6) 

The dispersion relation for wave propagation is conveniently expressed 

in terms of these tensors.    Under the quasistatic approximation^,  it 

suffices to set 

k      =    k  •  K(k,ü))  • k    , (5.7) 

since E^    is considered to be the gradient of a plane wave potential. 

The exact plane wave dispersion relation, however, is obtained by com- 

bining Maxwell's equations into a wave equation, with the current as 

source. This yields 

elgU? ~~ " "'^l "(f*)  'l ' (5,8> 

where the notation eig A = x means that \ is an eigenvalue of A . 

- 16 - 



The equivalent permittivity and conductivity tensors are obtainable 

from (5.4) by translating (4.17) Into plane wave notation. The magnetic 

field may be consistently dropped under the quaslstatlc assumption, 

leaving a, ■ (q/m)E.  , but the exact acceleration Is 

r   £       i i 
a (v)    =    (q/m)       (1-    ~ * v) ^ +   - v    • Ei     • (8.») 

2 2 Substituting In (5.4) and writing    n q /me      as   (ü        ,  the square of 

the plasma frequency,  leads to 

k  •  K(k,üü)    =    iü)       J :<fe ■ [■ 
(cu X+v+iü))u    -ik. 

o~- e e >'du (5. 10) 

and 

oo2    0   /     f (cu X+v+lü))u    -Ik-s   f        k k    ^ "V 

fi^^'li = i — J <h •e  ^ e        i(1 -'::: * Ä + "I/* £ll)du  • 
co  -oo >P~    L V.        co     "*""     a)  V "^ 

(5.11) 

Taking the divergences in velocity as indicated simplifies these to 

0 (ü)JC+v+ia))u    -ik.s 
K^.oü)    =   tu       J      S(u).e (e     * "^ du (5.12) 

and 

C(k,cu) =    1 ^r^fe^ (ü) X+v+iCU)u    -ik k-s r   k      k nil 
~~    (1 - - . w)I+-w   »du    . 

(5.13) 

- 17 - 
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In bounded systems, the quantities of Interest are often decay 

rates, spatial or temporal, particularly when these can be negative, 

indicating Instability or amplifying capabilities. From the power 

balance In terms of power and energy densities. 

V ' P + J? = -J-E  , (5.14) 

there is obtained, by appropriate integration in space and time, the 

decay rates of energy in a cavity or power in a waveguide, as follows. 

2at    =   W"T   [I   i'£dVdt    i (5-15> 

av     T A 
2a      =    p—5;   J J     JE dA dt     . (5.16) 

av 

In terms of the formalism developed here,   these decay rates may be 

calculated by taking   0(v)    to be    qv-E    ,   Integrated in space and time, 

The result of using this velocity-dependent operator in (4.19) is 

:4[- 
(a)oX+v)u 

2a   =    no ^ J \Sv ' Le       " *<"t'*'U) I <du  ,    (5.17) 

where the correlation tensor is 

R(8,w,u) = fj-j    f P ^(r+s^, w, t+u) E(r,t) dV dt    (5.18) 

for a cavity, or 

18 - 



  PavT   T  A 

for a waveguide.    Other «acroa-joplc obiervable«,  auch aa frequency ahlfte, 

are aimllarly obtainable by appropriate choice of the «Icroacoplc opera- 

tor   0(v)     , 

- 19 
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• .     IWVlltSl VBLOCITY SPACE 

A.  U ovtdent   fro. (6.12).   the basic quantity to be averaged 

«•loeitjr »pace has tbe fore 

over 

-ik.a 
■   e "-'.V      -'^ ■^o) 

(6.1) 

»bare 

4   ■   ^(u)    .     -h.8(u)     . (6.2) 

Wim faaarallf.  tberefore.  tbe diatribution function in "inverae 

velocity «pac«    by 

f^A)    .   (Al)     . (6.3) 

This is juat tbe eeloclty-apaoe.  tbree-diaeaalonal Fourier tranafora of 

tbe aoraaltaed unperturbed diatribution function    f m/n Tbe 
0 » '   0 

•qutvalaat peraittivtty tenaor la (S.U) la tben eipreaeible directly 

in teraa of    P^)    .evalualedM 1« («.»      Tbe averaging of aore conpli- 

cated function, of velocity eill tftan be adventageouely expreaaible in 

frm of   P^)   M oil, aa la 

<,«•* ■ "I '       <^'> • -fe • (6.4) 

— 
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In particular, the various velocity mounts are easily obtained by 

evaluating the derivatives of Ffc) at the origin A = 0 ; the 

Laplaclan of P(A) at the origin Is -<v2) 

The  algebraic form of the distribution function is generally 

simpler in Inverse velocity space, because of the normalization 

F(0) = 1 and the replacement of convolutions by products.  i„ particu- 

lar, a drifting distribution appears simply as the stationary one 

«ultiplied by the exponential factor e^'Io : Table I gives the 

form of various distributions in both velocity spaces. Note that the 

temperature T is taken in energy units. 

in terms of the distribution function in Inverse velocity space, 

the equivalent permittivity tensor becomes 

p  J^ÄW e e   "^F^du , (6.5) 

where   A(u, = -k.s(u)    and   OM^    l8 the Doppler.shifted frequency 

The equivalent conductivity tensor becomes,  after some manipulation 

of  (5.13), 

C(k,üO    =    (^(k,^) + Cb(k,cü)     , 
(6.6) 

where 

iSe    -    i 

0)     %e V       M V e 0    du     (6.7) 
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TABLE   I 

Distributions in Inverse Velocity Space 

1.    General: 

f(v) 

2. Cold: 

f(v) = n0 8(v) 

3. Drifting: 

f(v} ■vi-v 
4. Maxwelllan: 

mv2 

2T f(v: I = ii0(V2«T)3^2 e" 

5. Resonance: 

f(v; 
"o         \ 

' n2    (v2.,^ 

6. Radially symmetric i 

f(v; > = f( v|) 

7. Cyllndrlcally symmetric: 

f(v ) = f(v ) 
P 

8. Isotropie monoenergetic: 

f(v 
n08(|v    - v1) 

4 « v2 

9. Transverse monoenergetic 

f (v . ,„ V<V
P - vi)5(v 

E> 

2 it v 
P 

10, Beam in plasma: 

f(v) " VP^ + »b^^ ̂ 0> 

11. General averages 

FOV) = J f(v)e^^ d^Jf(v)d 3 
v 

FOV) =  1 

F^) = e     ^ F0(A) 

F(A) = 

_ 1 T.2 

e    ^A 

FOU = 
/ Ä.|V1 

FOV) = 
/sin A||v| \ 

\m/ 
F^) = <jo%y> 

FC\) = 
sin|^ v1 

^vl 

¥V " J0%V1) 

nft-n tL     lA'V 
F(A)=-£-5Fn(A) + j!e"0Fb(/O ■* n_      p •^-        n_ D ■»• 

0 0 

<t(v))   =   Jfü) t^) d3v/n0 ■ J F<A) tCA) d3A 

where   t (A) = (2n)"3 J f <v) e-1^- d3v | t(v) - J" t^V) A- d3A   . 

- 22 - 
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ls the contribution of the r.f. electric field, and 

Sb 

a£      0 i(a).k.v^)u -lA.v^  */^u        co^CuN 
^ kx J e e      A e    . U x ^ ^   ]du    (6.8) 
CD        -co «. ^ ~ ^ 

is due to the r.f. magnetic field. 

If cavity or waveguide modes are expanded In plane waves, similar 

reductions of eq. (5.17) may be achieved. There remains to substitute 

any appropriate distribution function F(A) into these expressions to 

yield the dispersion relations or decay rates by straightforward quadra- 

ture. Singular integrals do not appear in this formulation. 

More generally, the perturbation of the distribution function in 

inverse velocity space, FjM) , is obtainable by setting 

iA «v n
o0tS[) = 

e ~ "- +n (5'4)- Thus, the perturbed distribution is 

i(üjt-k.r) 

F(r,A,t) = F(A) + F1(A)e    "    , (6.9) 

with 

Fl 

0 J^      T Yu      i(ü)u-k«8 + A'V) 
>du  .    (6.10) 

The perturbations In charge, current, temperature, etc. are obtainable 

by evaluating this, and Its derivatives, at A = 0 

- 23 - 
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7c     QÜASISTATIC DISPERSION - B = 0 

Under the quaslstatlc approximation,  the significant quantity is 

the equivalent permittivity tensor,   given by 

2 „0               [o) X+v+i(ü)-k.v )]u -lA-vn 
M'^ - <   1    S(u) e ^      0   e -^FtA) 

-00 

2 

du  .   (7.1) 

The dispersion relation is then k = k>K(k,a})>k 

The case of B0 = 0 is recovered in the limit cu = o , whereupon 

S(u) = [(1 - e" )/\>]l    ,  or S(u) = ul in the collisionless case, and 

the permittivity reduces to a scalar: K(k,u)) =X(k,u)) i 

2 „0 i - e"Vu  [v+i(cü-k-v )]u -lA-v. X(k,co)=a)2 J  !__£__ e     - ^   e ^ 0 m) ^ (7 

where   A =  (k/v)(e" U - 1)     .    The dispersion relation la simply 

X(k,ü3) = i    .    Note that    v. = -i OF(0)/aA     . 

a)    Cold plasma:    F(A) = 1    . 

«si      0    i      --vu      (V+1ü))U # <ü2 

Xa|,CD).a>J   ;ü   1 -e e du=   —P— 
^» V ü)(ü)-1V) 

(7.3) 

A small loss component has been invoked to make the integral convergent. 

The dlspex   Ion relation here represents merely a damped oscillation at 

»he plosma frequency. IT2 

b)    Maxwellian distribution:    P(^) ■ • 

Der»,    A2 - (k/v)2(e"vu - I}2   or   ft1 • k'u2    for   v • 0    .    UM 

evlllslonloM e •• is the most  tractable,  reducing to 

-  14 - 



X(k,cü)    = 2     o0 
o)      f    u p "L "flO 

_  1 k^T    2 
^KüU    ~ 2    m    U    J e        e du 

2 Com      o 

- i; J" 29 
k T     -oo 

e2^ e-6    do 

P 

k^T 

dH 
dy (7.4) 

where    y =   (ico/kXm/aT)1/»    and    g^) = J
0    e^ +2y?  d?     .     The  integral 

-oo 
is the error function, with complex argument.    Landau damping,12'13 is 

implicit in this result.     It appears again more explicitly in the 

following case. 

-vilAl c)    Resonance distribution:     F(A) - e       '  ' 

Here,   |A|   =     (k/v)(e_VU - 1)    or  |A|   = -ku    for    v = 0     .     The collision- 

less case exhibits damping: 

XQj.o)) cu r
0     ton   viku 

J     ue        e du 
u) 

(Ü3 -  Iv  k)' 
(7.5) 

CollislonlMs Landau danping at the rat«    v k    m »vMto« froa tb* 

dispersion relation.     The pbyalcal  Intcrprctatun of this case  Is 

obscure,  hov«««r,   a«  this distribution baa so •sll-dsfiMd 

d)   ISMS,    Hfc.) - • ^"^ r^)    . 

A >!apl». distributsd bsss rssvlu is o*if s Dopptor shift 

•ts. 

»^•»„^•"ä'V • iM> 



as is evident from (7.2). For a be.« In a stationary plasma, however. 

n = . + % and Cp2 in (7.2) Is to be replaced by ^ = co| + ^ , 

Then v0 . ^(i^^) and, In (7.2), 

iA'V. 

u0  -'     P P 

For equal, opposed, Interpenetrating beams, ^ a 0    and 

a£F(/0    =    2a)2    cos^vbFb<A)     • <7-8) 



8.     QUASISTATIC DISPERSION - B ^ 0 

In a magnetic field,    £(u)    is given by  (4.14).    The product 

S(u)e2U    appearing in (7.1)    reduces to    -S(-u)    ,  leaving 

K(k,cü) = CüJ Y'1   J      (eiU - 1) 
i(ü)-k.vrt)u    ik.S(u)-\r 

,        ~-0      e~~       ^ F(-k.S(u))du  (8.1) 

where Y = v + cu X .  In the collisionless limit,  -S(-u) reduces to 

sin ui u     /I - cos et u 
C   i   I c -.S(-u) =  —   I   +| 

"> ü) 
U-J (8.2) 

and the dispersion relation, which involves 

sin a) u 2 

-k.S(-u)k    ■     k     + u k,|       , 
"" — — tu 

(8.3) 

reduces to 

4^) CD 
= o   , (8.4) 

iHLe 
o P 

sin d e      C      F(/V) d0 (8.5) 
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and 

in  - J   e 
i — 0 

tu. 
F(A) d0 , (8.6) 

with A = -(k/üi ) « ^sln SJL - (1 - cos0) X + ^[jj) . 

a) Cold plasma;  F(A) = 1  . 

From (8.1), 

£<£,*>. «IZ1  /0(*IU-1) 
,lüJU Ju 

=    _E    (cu - 1Y)"1 
cu2 

_E 
CU-lV-Kü U)-1V-<D CD-lV 

(8.7) 

and the dispersion relation is 

1 - 

(u2   (03 - iv)     "I 
_P         „2 
 5 5   +    H 
cu[(ü)-iv)z - üJC

Z]J 

Cü_ 
2     "1 

a3(u)-iv)_ 

b)    Maxwellian distribution:    F(A) = e 
2 m 

(8.8) 

In the tractable collisionless case,  with    6 m cu u    , 
c 

2       S. 

"c 

2/^ 2, 2/.. 2V  o2 A^ = —  •  8(0)   •  S'(0)   • ~    = 2(k *M ')(1 - cos0) +   (kj/cu ,6) 0*     .   (8.9) 
0)— ^-cu xc "'C 

Let 
2 2 

k    T ka  T 
A,     - I      > |      A,«    - 

A       cu^^m cu^'m c c 
H   ~- ~2i * T     >• = \ +  H (8.10) 
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Then 

F(A) = e ■L e 

-i ve2 -X.   X cose   2 ^M0 

(8.11) 

so that 

"x.  »0 
g = e X   J »ine 

ifie  \ cose  ' 2 x"e 

e   e de 
-w 

(8.12) 

and 

-x  o  ine X cose ' 2 Xll^ 
H - • * J Ö •   e1    e de , (8.13) 

where 0 = ü)/üJC . By Inspection of the integrands, it may be antici- 

pated that the parallel component of k will introiuce collisionless 

13 7 • 
damping.  •  The special case of perpendicular propagation is free of 

this and is of particular interest. The dispersion relation is then 

-| e  f sine 
me x cose 

e   e 1 de (8.14) 

Integrating by parts and using the Fourier series 

00 

Xcose 

-I  V 
ine 

=  >    ira) 
Os .QO 

(8,J5) 
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yields 

,    k2T       "x «r1  e"Xlna> 
1 + —    =e       ioM + rf)      -ÖJL^     • (8.16) 

P itei    n    - n 

This dispersion relation for perpendicular propagation displays cyclot 

harmonics.  It is easily shown to agree with, but converge .«aster than, 

ron 

14 
the version quoted by Stlx.1* it is equivalent to that given by 

15 
Bernstein. 

c) Resonance distribution: F(A) = e ^^ ' 

The colllsionless case of perpendicular propagation is readily handled. 

From (8.9) with k|| = 0 , 

FCV) =e-2>i|sin0/2| 

where M = Vjk/^  . The dispersion relation is 

(8.17) 

2 

1=   ^     J0 sin 9 e™ e-H8in I | de 
c 

2      » 
%   r»   -i2nn(n+i)  2« me -2n sm | 

" j L e J e   sln 0 e d0 - 
c    n=0 0 

which reduces to 

,2    « .n+l 

&  L        Z 2 + "5   /        —I ~1     •   <8'18> 

-   30 - 



This also shows cyclotron harmonics but not, despite appearances, 

singular behavior when n = n + 1/2 . 

d) Effects of drift and collisions: Fft) = e ~   F (A)  . 

A drifting distribution Introduces no more than a Doppler shift into 

(8.1), as is physically evident from a transformation to a moving 

reference frame.  If, however, there is drift of one plasma component 

relative to another, as exemplified by (7.7), the mean drift velocity 

differs from that of either component. There are then introduced into 

the integrand In (8.1) factors such as exp ik.S(u).(v/, - v.) , besides 

the Dcppler shift. A brief discussion of their effect is in-order. 

By (4.15), the drift factors are of the form 

[k.(vn - v. )      vl "I 
 0  ~b  (1 - e"VU)     (8. 19) 

In the collisionless case, this is exp ik.(v„ - vt)u . which merelv 

reassigns to each drifting component its proper Doppler shift.  In the 

presence of collisions, the effect of this factor is clarified by the 

interpretation of the original integral (4.16) as a superposition of the 

perturbations of the past  (u < 0) , as propagated to the present 

(u = 0)  . The factor (8.19) is an oscillatory function ei*(u) , of 

instantaneous frequency (!0/du = k. (^ - v^)  e"VU ; see Fig. 2.  In the 

sufficiently distant past, this is of so rapid variation as to erase all 

memory of earlier perturbations, as confirmed by the well-known Riemann- 

16 
Lebesgue theorem.   This oblivion-producing aspect of collisions is seen 

to be incorporated mathematlsally In the model of collisions adopted herein. 
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Figure 2 - The oblivion factor due to collisions 
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f.    tUCT DI8P1MI0H - B ■ 0 

Th« «xMt dlapvrslon rvUtlon, obtaiMd froa tb« full Mt of 

IUjtv«ll't •qu.tion«.   1« «iv.n in frm ot xtm norullMd conductivity 

t«Mor   CU.o»)   bf (d.i).    SB tüU ooonoctlo«,  lt ls «wcful to not« tbo 

folloalBi prop.rtM. of Uwt «quatlon.    firtt,   tho «Uctrlc flold   Ij 

1« to b« MI olioovootor corrwapoadtug to tho pr«»ciil»d «lioavaluo. 

•if (q£ ♦ 01) ■ a «ig * ♦ P <».l) 

la aa tdaatity .    Third,   if UM cooducttvlty tooaor abould taka tba for« 

Cmal* P kk/k (t.t) 

tba dlaparoloa ralatloa (S.S) «ould 

<¥i ■•]?••)• (?)" - (9.3) 

or by (9.1), 

I ■ a ♦ (?)••[-(?)■]-? (9.4) 
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2 
But   «ig kk/k   . i    for longitudlMl moo*; or Mro f«r trHMV*n« 

Tb« dlspsraioo r«Utlon tteo deoo^OMs into 

1    «0*0 (B.6) 

for loafitudln«! «odr.    .ri 

■ ■ ••(?)' (t.f) 

for trawvono aodo«.    Th« wtrla   C^h,«)    i. «!«•• iMoroily by 

<•••-«).    If   C    rtduco« to   Q   . • oomiar,  (t.»ti) .„j, ^g^ ^ 

•itk   0.0    . 

la UM «bMM» of tk» oxtoraol MCMtic ftold.   oi   • 0   «ad 

^ ■ tt/v)(o       - i)   or  4 - -ta   ««en eomsioM MM ■ogltrlblo.    Tlwo 

^^k.o»)    and   ^U.a»)    roduo» to 

•nd  c - c   ♦ a    , 
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CU.,I -   *   -»       • 
r.-i-H 

•: It.tl 
I*) 

•MA M ft MttU' (#.»••).   tt» «UpMVlM fVUUMM 

4 » ft. Ml 

t«f   lMCll«tlMl «MiM.   mt 

■ 
1 •      >      • 

«   I«) (?) Ct.UI 

» J.i 

m 4t»irtt«i(i*n    rui 
•i=A 

i?- h' (t.iai 

•o Uiat,   fro« <§•}.  tfea r,t.  »•«t.o-u   f.c 

C^h,»), «feidi k«ao« r«4hM*t I« 

M eoatrilwtto» to 

» nor    T   1   «w*IB'" "i 
Ct.lS) 

Uwpg --- 



I« u» «lliaiMtaM mm, MM 

« icb'tfßyy-1®'* **> 
mah inw, «• fin n 11 

••k[-(5)4'-^' «       ».Ml 

l«*«M**t««t  m ri i.  «a« 

...^.-.•^•.(.J •    « 

1 • 3— / «i1 - ii .•| • ^ < tt.ltl 

f«r loatitwtfiMl ••»»•.  Mi 

(fJ-S;^'^     — 

T-  



-     •* 

,*.£.*••**.[.J'**'^'* 

•• Ü •ftdlÄ. ♦»••* * ■    ' • • ■ • ' •• •ol'r*« 

I .*«* «<«*»««»» 

, .f*y .fqi^ 1 .«. »ä» (rrCK); 

t^ im i«m.i«« MA. - !• i—.lf <— -   '•'••l Ul>i^ *M»l'i 

I 
• _i \ 

(9.21) \ M-ä) 

I 
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• (Jj • ft • S) .♦ »s 

  -JM 
,1    «ii ■ BW   »   ««*«f««MM»^    f%» 

klfltaiO«*      «MM. 

ecft,*> • • ^ Jji- MyJl • •   IKH4«   . (f.a») 

(9.26) 

which la of th« for» {9.2).    Th« dispersion relations are therefore 
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-E    r 1X ♦  (Vjk/o)) e   e      X dö (9.27) 

(or longitudinal ««vas,   and 

•    i    -t e de +    — 
cu2    "- V^ 

for transverse waves.    Explicitly,  these are,  respectively, 

1 (9.28) 

a/2 

!    s P  (9.29) 
(cu - iv^)2 

and 

ik>   V"5 y 
!    ,, P +   f— ^       . (9.30) 

Ü)(U) -  iv 

which exhibit Landau damping, 

d)    Cold beam:    FOO = e 

Here     51   - i v    F    and both the r.f. electric and magnetic fields 

contribute to   C    ,  yielding in the collisionless case. 

c(k,co)3   fl+    -J£—\    (l+    -^-    ]   • (9.31) 
co2 r   a> - k.v0 y   v     CD - k-v0 
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10.  EXACT DISPERSION - B ^ 0 

In the presence of a magnetic field, the exact expression for the 

normalized conductivity tensor entering the dispersion relation is, as 

previously given, C(k,ü)) = C (k,ü)) + C. (k,a))   where 

C (k,tü) = 
^P

2
 ro -^'^o i   J   e (-gi) 

[Y + Küü-k.v )]u 
du 

(10.1) 

with Y r: co X + v , and 

'"B     »O^'Zn ^  / -ü)^u  üU    CO Xu\ i(cu-k'v/v)u 

In these, 

The dispersion relation is 

du 

(10.2) 

A(u) = -k.S(u) = k.Y"1^-" - l\    . (10.3) 

^öH-ö2-1' (10.4) 

with the electric field as eigenvector. 
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mmi »mmmmmm nmimmiMmummimm >-m .■     . - ■ ^■l;.^.-•^V.i■       ■.■■    ■K-ii- I 

a)    Cold plasma:    F(£) = 1 . 

ÜJ o      (^ X+v+ia))u 
C(k,a))    =    i    _E     J      e    ^ du 

=   -£    (a) - lv - ia> x) 
0) 

ÜÜ, _£ 
tt) 

il 
cu + üü-iv Cü - a)    - iv üü-iv c c . 

(10.5) 

The electric field vector must satisfy 

-2 ii'£ 
O) 

iv   -  la) X J       '  E  = j ^-|-    -  11  E -*   ( tu - iv  - ia) X j 

or 

c  (ü)-iv) k k.E -fcuj a) +  (c2k2-co2)(cü-iv)"| E = c2cu k-E iX-k - (c2k2-cu2)cü iX.E 

(10.6) 

Waves of various linear and circular polarizations may be extracted from 

this equation. 

1 T 2 

b) Maxwellian distribution:  F(A) = e ^ 

Since SF/fcA = -(T/m)AF and X' = -X , the cross product in CL (k.<0) 

vanishes, leaving 
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'"p    (iO T (cüJC+v+icü)u 
C(k,ü)) - I-* P  F (I -IAA) 

c) Resonance distribution:  FCA) = e 

du . 

■"M 

Again, C (k,ü3) =0 and as F + |f A = (1 i AA) F 
»A w 

O) 
D  „v 

v, (P   X+V+iü3)U 
£(5.0)) = i -P J F (I - ^ AA) e ^      du 

A "~ Ü) -co 

(10.7) 

(10.8) 

In the cases of these last two distributions, only special cases of 

propagation and polarization parallel and perpendicular to the magnetic 

field can be considered tractable.  It is useful to note the explicit 

expression 

A = e 
-vu 

sin'' -|- + sinh2 — 
vu 

T 

(;J 
+ k„ 

sinh2 ^ 
2       2 

(0" 
(10.9) 

but the complexity of the quadratures precludes further development of 

general dispersion relations here. Of considerable interest, however, 

are the spatial and temporal decay rates of waveguide and cavity modes 

and the possibilities of amplification and oscillation when these can 

become negative. 
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fl 
11.     TEMPORAL DECAY RATES 

The rate of decay of energy in a cavity has been given in (5.17)  as 

2a = V   1° \^ ' P^ * US*» *• u> * * /du   .      (ii.i) 

where R(s, w, u)  is the correlation tensor 

1   * « 
R(s, w, u) = ^—^ J J ^(r + s, w, t + u) E(r,t) dVdt  ,   (11.2) 

av   x V "" ^     "        "" 

the integrations being over the cavity volume V and a time interval 

T  .  In this equation, the acceleration a (r , v , t)  is the Lorentz 

one, given in (4,17).  In (11.1),  s and w are 

-Yu -Yu  -1 
1 ~ ^.n + e "    • (v " Vn)  .   s = vnu + (1 - e — ) Y  • (v - O 

(11.3) 

where Y = cu X + v  . 

To evaluate the decay rate of a cavity mode, sufficient accuracy 

is obtainable by using the unperturbed field pattern in theie expressions, 

The corrolatioh tensor may be evaluated for any desired cavity mode and 

the substitution for w and s in (11.3) then permits the integration 

of (11.1) explicitly. 

When the cavity mode is readily decomposed into plane waves, the 

calculation of the decay rates is particularly simple, as then the 

distributions in Inverse velocity space are directly utilizable. The 
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calculations will here be illustrated for the simple case of the "cavity" 

consisting of infinite space, wherein a suitable mode is the plane wave 

_,  „ _ i(ayt-k.r) 
£ = Re E1e    - ~  .The acceleration is then 

*<£, v, t) = Re a fa _ r . v) i +  = vl . E  e1(ü)t-£-£> 1 m L    CD  - -   a) -J  -1 (11.4) 

and the correlation tensor is readily found to be 

q     f    k        k "J 
R(s, w, u) = -~ Re  (1 - - . w) I + = w 

0    L   CD  ' '   cu J 

E E 
~1~1 

^ • E 
-1 *1 

i(cou-k.s) 

(H.5) 

Hence, by comparison with (5.11), 

2a ■ Re -la) 
£i ,£(.£»UJ),£1 

m  Im 
£. • üjC(k,ü)).E 

(11.6) 

The results previously obtained for C(k,cü) may therefore be used 

directly to calculate decay rates in the plane wave case. 

In the absence of the magnetic field, the decay rate for a cold 

plasma XB,  from (9.9) 

2a ■ Im 
ü) 

ü)-iv 

P 
2   2 

(ü    + V 
P 

(11.7) 

and is, of course, due to collisions. 

- 44 



i.*}*mm-Witmvr 

For a Maxwelllan distribution, the decay rate obtained from (9.14) 

is, for longitudinal waves. 

^   ,0 
2a = Re -H J  (1 - 7

2e2) 2*2x ei0 e 

1 2.2 
2 7 0 

de 
CÜ   -oo 

2 

CD   -oo 

1 2.2 
- ^ 7 0 

2 2 
7 0) cose e      de 

(ü\2 

which is the collisionless Landau damping decrement, with 7
2 

For transverse waves, similarly, 

(11.8) 

T^/mci)2  , 

• 
00   0 

2a = -£ J  cos© 
0)  -oo 

1 2.2 
2 7 0 a.2 /„N1/2 e-1/(272) 

de = -^   - 
a) V2 

(11.9) 

For the collisionless case of a resonance distribution, the corres- 

ponding decay rates are, from (9.29,30), 

ü) ü> 

2a ■ Im 
(a) - iv^)' 

2 2 SfcD  a) v.k 
P 1 

,2 2 2 2 (oo + v. k ) 
(11.10) 

for longitudinal waves, and 

(ü 
2a ■ Im 

a) - iv k 

2 cu  v,k 
P  1 

2    2 2 03 + V* k 
(11.11) 

for transverse waves. 
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In the presence of the magnetic field, the decay rate for a cold 

plasma Is, from (10.5), 

2a =  Im üj      e*   •   (ü) - iv  - ±üi X)"     .  e 

2 
CO     v 

p 

e    • R  •  e 

o o 
{oyHa )    + v 

c 

e     •  L  • e 

2 2 
(ü) -03 )      +   V 

c 

e*  . J[ . e 
2       "T" 

03     +   V 
(11.12) 

where    e B Bj/I^l     .    Note that    iX    ,  R    ,  L    (   j|    are all hermltlap 

matrices,  whereas only the antlhermltlan part of    C(k,03)    contributes 

to the decay rate. 

For a Maxwelllan distribution,   from (10.7), 

(oi X+v+laj)u       - i - A2 

2a = Re cu * e*   • J      (£ " Z AA) e    '' e        m        du • © (11.13) 
2 **   r.0  .   T 

This reduces, for example, in the colUsionless case of a parallel- 

propagating transverse wave, to 

p «* 0) 
2a = -E e* . J cos [ — - ^ ) 0 

03      -oo   \(x> "" y 
-) 

e   \ ^ y   do • e 

s  03 

2      Tk2 J 

1/2 
m(03+ü3 ) 

c 
m (03-03 ) 

c 

2Tk2  «♦  „A       2Tk2  ** 
e e  • R»e + e e  • L • e 

(11.14) 
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The right- tind left-handed circularly polarized waves are seen to suffer 

differsnt Landau damping decrements. 

The resonance distribution case analogous to this last one yields 

similarly 

2a = R© ü)  ©* • f 
n  (CD X + ia) + v,k)u 
'-J   o*«       i du « e 

-vo 

2 
a)  v.k 
P  1 

e* • R • e 

7T ^2    §72 (üU+ü) ) + v, k 
c     i 

e 

.2    2, 2 
(CD-CD ) + v, k c     1  . 

(11.15) 

The effects of a beam component of a plasma in a magnetic field 

are of special Interest, because of the possibility of negative decay 

rites. An indication of how this can come about is provided by the 

following considerations. The inverse velocity space distribution 

function for a warm beam has the form e     Fo^ ' where ZQ    1S the 

beam velocity and Vli
,(A)    gives its stationary distribution.  In the 

expression for Cö<k,(ü)  , eq. (10.1), F + föF/aAM is hence replaced by 

e ""   [F + (»F /aA)A + i^j A FJ . The exponential factor cancels 

in the integrand, leaving a Doppler shift. The last term, arising 

from the drift, can provide an imaginary component tor C^Ck,^)  , whose 

sign depends on that of the drift velocity v^ with respect to the 

direction of propagation. For example, the coniributlon to C (ktü)) of 

this last term in the case of a beam wich a Maxwellian distribution 

drifting along the external magnetic field is, in the absenca of collisions, 
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2 r 
«  rto l^JE+i^-fe'yJlu 
2 

pO j LCUoi+1(a>*,Ä^o>Ju 
du ,   (11.16) 

a)  -w 

so that for a parallel-propagating langitudinal wave, for which A 

reduces to -ku , the contribution to the decay rate is, from (11.6), 

IT  2 2 
9A      A   A  ™--ku  i (a)-k v >u 

2ae0 - In % ^ • Wl J" ue 2 m     a   - ^J  du 

1 T . 2 2 
2      0   ~ 2 in 

= % V J u e sin(a)-k.v )u du 

This can be negative, either if v0k < 0 , i.e. for upatream propagation. 

or lf il'Zo > ^ ' i-e- lf the »oPPler shifted frequency is negative. 

This negative Landau damping decrentent would have to overcome the normal 

Landau damping provided by the other terms in the expression in order to 

leave net growth. 

The Fourier analysis into plane waves is, of course, not necessary 

for thel calculation of the decay rate for a cavity. The correlation 

tensor R(s,w,u) is a property of the cavity field pattern which may be 

calculated separately before It is Introduced Into eq. (11.1). 
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12.  SPATIAL DECAY RATES 

The rate of decay of power flow along a waveguide may be calculated 

in a manner completely analogous to that of temporal decay rates. The 

formula is the same, 

2a = noq C^*[JU ■*-'-"' U) '~]/ du 
(1?.1) 

but the correlation tensor is now 

X 

R(s, w, u) = =—= f r a (rts, w, t+u) E(r,t) dA dt  , 
        av  T A ""1 

(12.2) 

where the Integrations are over the waveguide cross section A and a 

time interval T .  In (12.1),  si and w are functions t£ v and u , 

as in (11.3).  The correlation tensor is a property of the waveguide field 

pattern and may be calculated independently, befor* the substitutions 

for s and w make it a function of ^v and u . 

Again, the decomposition of the field pattern irto plane waves, 

when convenient, expedites the calculations, and again the simple 

illustration of an infinite-space "waveguide" is instructive.  For a 

plane wave, the energy density and power flow are related by the group 

velocity of the wave. Hence, the spatial decay rates for infinite plane 

waves are obtainable from the temporal decay rates derived above by 

dividing in each case by the undamped wave group velocity c k/oj . 

For a rectangular waveguide supporting the TE10 mode 
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j;(r,t) = Re e sin(k«£)e   ~£'~' propagating along B  , polarized 

along e , with k«ß = 0 and jkj = n/a , the correlation tensor is 

found to be 

R(8, ^l u) ■ (q/mc EfiJ) Re fg cos k^s + i h sin k.sj e e   -E —'  , 

(12.3) 

where 

g = e^(co-ß.w) + ££ • w  »    & ■ £ k«w - k  e.w  .        (12.4) 

Hence,   th    spatial decay rate is obtainable as 

2a =  (a£/c2ß) Re e   . ^Al + v ^ •  e^+lü5)U e"^'^  • [| cos^k-s^ihsinOi^^du    ,      , 

(W.5) 

—Yu —1     —Yu 
with dw/&v = e —  and dji/d^v = Y    (I - e — )  .  If the trigonometric 

terms were decomposed into exponentials, the previously derived plane 

wave results, in terms of the distribution in inverse velocity space, 

could be used directly, by appropriate composition. 
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13.  OTHER EXTERKAL FORCES 

The results obtained apply to a plasma subjected to external forces 

limited to a constant magnetic field, together with an equivalent fric- 

tional drag force to represent collisions phenomenologlcally. The 

approach can be readily generalized to allow more complicated force 

fields. These might include gravity, d.c. electric fields, time varying 

pump fields, and incident waves. The latter two would result in para- 

metric effects and various wave-wave interactions. 

To introduce any external force field requires only the solution 

of the dynamics problem giving the unperturbed orbit. For example, 

there may be added to the magnetizing field and viscous force a constant 

electric bias field, or gravity. Then 

*0 = ~(ö)e£ + V)^ + (q/m) ^0 + ^0 (13.1) 

and the orbit is given by 

-Yu -1 , -Yu 
V(T) = e -  -v - Y" (e - - 1) [(q/m)B0 + v vj   (13.2) 

and 

^(T) = r + Y"1 (1 - e"^U) • v -| Y"2(l - e"^U) - Y^ul [(^«^V^ 1 , 

(13,3) 

where u = T - t    These are to be substituted for w and r + s , 
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respectively, In the various equations. 
■ 

For a time varying applied electric field E (t), the orbit is 

-Yu >U    -*? V(T) = ^ + e -     •   (v-vo) +   (q/m) J    e'^ E^r - ?) d?     .       (13.4) 

0 

la)_t 
In particular,   for a harmonic pump field    E0(t) = Ee    0      ,   this reduces 

to 

-Yu if^n11        "Yu~l ^A* 
V(T) =^+6^-     .   (v-v0) +   (Y+   te»0) *^    ü     - •      J  (q/m)Ee    0       .   (13.5) 

KCü t-k -r) 
If the pump is an incident wave E(r,t) = E e , the 

orbit is given by the solution to 

d r     dr    q 

3 +1- = - 
dr     dr    m 

dr  /k 

£0+ fr   \-o
X*0 

CV-V5<T:0 
+ v^o • 

(13.6) 

with V(T) = dr/dr and subject to £(T) = £ and V(T) = V at T = t 

Since the entire approach is perturbational, it would not be inconsistent 

to use orbits obtained from this equation by successive approximations or 

linearization. 
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14. CONCLUSIONS 

A formalism has been presented which unifies the analyEis of the 

various wave properties of a plasma subjected to some external force 

fields, particularly magnetization. The aim has been to derive relations 

of a general nature, into which there may be introduced the appropriate 

descriptions of both the unperturbed orbit in the applied field and the 

equilibrium velocity distribution of the plasma constituents. Straight- 

forward quadratures then yield the wave dispersion relations, the permit- 

tivity or conductivity tensors, the charge or current distributions, and 

absorption or growth rates, both temporal and spatial, as well as the 

perturbed velocity distribution. 

In summary, the Boltzmann equation has been linearized by separating 

the acceleration into externally applied and internally Induced components, 

with collisions considered phenomenologlcally as a viscous retarding 

force.  The solution to the linearized equation was taken beyond merely 

that for the perturbing velocity distribution to obtain directly an 

expression for the perturbation of any macroscopic quantity which can 

be calculated as an expectation value with respect to the unperturbed 

velocity distribution. 

The effects of collisions have been accounted for in a convenient, 

yet not unrealistic, manner. With Just an effective relaxation rate v 

as parameter, they were considered as simply damping the otherwise helical 

unperturbed orbits of the constituent particles. Collisions appeared as 

an additional, effectively external, viscous drag force tending to relax 

the velocities toward the mean flow velocity. This model is mathematically 
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tractable and avoids the paradoxes associated with indiscriminate conver- 

sions of real frequencies to the complex form co - iv . It achieves 

consistency Mtween quasistatic and exact results and reduces properly 

to th=j cold plasma fluid model. In the formulation interpreted as super- 

positions of perturbations along the particle trajectories, the collision 

model introduces factors that tend to destroy the system's memory of 

perturbations suffered in the distant past, as measured by v   . 

There is thus provided a simple mathematical model of physical collisional 

effects. 

The key quantities obtainable in this formalism as expectation 

values are the permittivity and conductivity tensors, from which the 

dispersion relation can be extracted by combination with either the 

Poisson equation or Maxwell's equations.  Spatial and temporal decay or 

growth rates were expressed in terms of similar correlation tensors 

associated with the waveguide or cavity field pattern. 

In the case of plane waves, it was found that most quantities of 

interest are expressible through the expectation value of an exponential 

function of velocity. This was the basis for a significant simplifica- 

tion Introduced by expressing the equilibrium velocity distribution in 

inverse velocity space; i.e. as a Fourier transform in velocity. A 

variety of expectation values are then obtainable by simple differentia- 

tion or convolutions.  In addition, singular complex integrations are 

thereby avoided and phenomena such as Landau and cyclotron damping 

appear naturally. 

Explicit results have been presented under the quasistatic 
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I 
approximation and without it, in the absence and in the presence of the 

applied magnetic field. Dispersion relations have been derived for 

these cases for cold plasmas, for Maxwellian plasmas, for resonance 

distributions, and for beams or drifting plasmas, in some cases with 

collisions included explicitly. 

Temporal and spatial decay rates, particularly Landau and cyclotron 

damping, have been calculated for plane waves by simple integration. 

The quadratures necessary in less tractable cases have been indicated. 

Finally, the requirements for generalizing the theory to include para- 

metric interactions have been presented. 
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